In situ isotopic studies of the U-depleted Allende CAI

Curious Marie: Pre-accretionary alteration and the co-existence of $^{26}\text{Al}$ and $^{36}\text{Cl}$ in the early solar nebula

Haolan Tang$^{a,*}$, Ming-Chang Liu$^a$, Kevin D. McKeegan$^a$, Francois L.H. Tissot$^{b,c}$, Nicolas Dauphas$^b$

$^a$ Department of Earth, Planetary, and Space Sciences, UCLA, Los Angeles, CA 90095, United States

$^b$ Origins Lab, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, United States

$^c$ Department of the Earth, Atmospheric and Planetary Sciences, MIT, Cambridge 02139, United States

Received 18 August 2016; accepted in revised form 1 March 2017; available online 18 March 2017

Abstract

The isotopic composition of oxygen as well as $^{26}\text{Al}$-$^{26}\text{Mg}$ and $^{36}\text{Cl}$-$^{36}\text{S}$ systematics were studied in Curious Marie, an aqueously altered Allende CAI characterized by a Group II REE pattern and a large $^{235}\text{U}$ excess produced by the decay of short-lived $^{247}\text{Cm}$. Oxygen isotopic compositions in the secondary minerals of Curious Marie follow a mass-dependent fractionation line with a relatively homogenous depletion in $^{16}\text{O}$ ($\delta^{17}\text{O}_{\text{Curious Marie}} = -8\%$) compared to unaltered minerals of CAI components. Both Mg and S show large excesses of radiogenic isotopes ($^{26}\text{Mg}^*$ and $^{36}\text{S}^*$) that are uniformly distributed within the CAI, independent of parent/daughter ratio. A model initial $^{26}\text{Al}/^{27}\text{Al}$ ratio $(6.2 \pm 0.9) \times 10^{-5}$, calculated using the bulk Al/Mg ratio and the uniform $\delta^{26}\text{Mg}^* \sim +43\%$, is similar to the canonical initial solar system value within error. The exceptionally high bulk Al/Mg ratio of this CAI $(95)$ compared to other inclusions is presumably due to Mg mobilization by fluids. Therefore, the model initial $^{26}\text{Al}/^{27}\text{Al}$ ratio of this CAI implies not only the early condensation of the CAI precursor but also that aqueous alteration occurred early, when $^{26}\text{Al}$ was still at or near the canonical value. This alteration event is most likely responsible for the U depletion in Curious Marie and occurred at most 50 kyr after CAI formation, leading to a revised estimate of the early solar system $^{247}\text{Cm}/^{235}\text{U}$ ratio $(5.6 \pm 0.3) \times 10^{-5}$. The Mg isotopic composition in Curious Marie was subsequently homogenized by closed-system thermal processing without contamination by chondritic Mg. The large, homogeneous $^{36}\text{S}$ excesses ($\Delta^{36}\text{S} \sim +97\%$) detected in the secondary phases of Curious Marie are attributed to $^{36}\text{Cl}$ decay ($t_{1/2} = 0.3$ Myr) that was introduced by Cl-rich fluids during the aqueous alteration event that led to sodalite formation. A model $^{36}\text{Cl}/^{35}\text{Cl}$ ratio of $(2.3 \pm 0.6) \times 10^{-5}$ is calculated at the time of aqueous alteration, translating into an initial $^{36}\text{Cl}/^{35}\text{Cl}$ ratio of $\sim 1.7 \times 10^{-5}$ at solar system birth. The Mg and S radiogenic excesses suggest that $^{26}\text{Al}$ and $^{36}\text{Cl}$ co-existed in the early solar nebula, raising the possibility that, in addition to an irradiation origin, $^{36}\text{Cl}$ could have also been derived from a stellar source.

© 2017 Elsevier Ltd. All rights reserved.

Keywords: Curious Marie CAI; $^{26}\text{Al}$-$^{26}\text{Mg}$ systematics; $^{36}\text{Cl}$-$^{36}\text{S}$ systematics; Aqueous alteration; Origin

1. INTRODUCTION

Extinct radionuclides have proven to be some of the most useful tools for understanding the astrophysical settings of solar system formation, the timescales of events in the early solar system (ESS), the irradiation history of...
early formed solids, and the thermal history of planetary bodies (see reviews by Meyer and Clayton, 2000; McKee and Davis, 2004; Wadhwa et al., 2006; Wasserburg et al., 2006; Dauphas and Chaussidon, 2011). Yet, the origin of some of the extinct radionuclides remains a matter of debate. Many of the longer-lived extinct nuclides, such as $^{182}$Hf, $^{129}$I, and $^{244}$Pu, likely originated from the long-term chemical evolution of the Galaxy (Clayton, 1985, 1988; Nittler and Dauphas, 2006; Huss et al., 2009; Young, 2014). On the other hand, some very short-lived radionuclides ($t_{1/2} \leq 1$ Myr), such as $^{26}$Al, may come from the stellar winds of one or more nearby massive stars and have been injected either into the molecular cloud from which the Sun formed, or directly into the early solar nebula (Arnould et al., 1997, 2006; Gaidos et al., 2009; Tatischeff et al., 2010; Gounelle and Meynet, 2012; Tang and Dauphas 2012; Jura et al., 2013; Young, 2014; Gounelle, 2015). In such external seeding scenarios, these injected radionuclides can potentially be used as high-resolution chronometers to constrain the evolution of the ESS. In contrast, the presence of other short-lived nuclides in the ESS is best understood as resulting from local irradiation of nebular materials by the proto-Sun (e.g., $^{10}$Be, $^{41}$Ca, and $^{36}$Cl, McKee and Davis, 2000; Marhas et al., 2002; Hsu et al., 2006; Chaussidon and Gounelle, 2006; Duprat and Tatischeff, 2007; Jacobsen et al., 2011; Liu et al., 2012; Bricker and Caffee, 2013; Turner et al., 2013; Trappitsch and Ciesla, 2015). Accordingly, the difference in the abundance of an irradiation-produced short-lived nuclide among various ESS objects does not hold any chronometric information, reflecting instead the irradiation history by particles emanating from the young Sun.

Chlorine-$^{36}$ ($t_{1/2} = 0.3$ Myr) decays to either $^{36}$Ar (98.1%, $\beta^-$) or $^{36}$S (1.9%, $\alpha$ and $\beta^+$). This radionuclide can be produced by irradiation of gas and/or dust of solar composition (Leya et al., 2003; Gounelle et al., 2006). Alternatively, stellar nucleosynthesis in AGB stars or Type II supernovae could account for the presence of $^{36}$Cl in the ESS (Wasserburg et al., 2006). Evidence for the prior existence of $^{36}$Cl in the ESS comes from radiogenic excesses of $^{36}$Ar (Mury et al., 1997; Turner et al., 2013) and/or $^{36}$S (Lin et al., 2005; Hsu et al., 2006; Ushikubo et al., 2007; Jacobsen et al., 2011) in secondary phases (e.g., sodalite and wadalite) produced by alteration of Calcium, Aluminum-rich inclusions (CAIs) and chondrules. Though the presence of $^{36}$Cl in the ESS has been demonstrated, the inferred initial $^{36}$Cl/$^{35}$Cl ratios in previous studies vary over two orders of magnitude.

The former presence of $^{36}$Cl in the ESS was first detected as radiogenic excesses of $^{36}$S in a fine-grained CAI from the Ningqiang chondrite with a Cameca small geometry ion microprobe (ims-6f). Sodalite-rich alteration assemblages showed clear excesses of $^{36}$S that positively correlated with CI/S ratios, giving a $^{36}$Cl/$^{35}$Cl ratio at sample formation of $5 \times 10^{-6}$ (Lin et al., 2005). Similar $^{36}$Cl/$^{35}$Cl ratios were reported in sodalite from Allende CAIs and a porphyritic olivine chondrule (Hsu et al., 2006; Ushikubo et al., 2007). However, measurements of another suite of CAIs with a Cameca NanoSIMS 50 ion probe failed to reveal clear $^{36}$S excesses in sodalite, indicating either heterogeneity in $^{36}$Cl/$^{35}$Cl in individual objects or a potential artifact in the sulfur isotopic measurements (Nakashima et al., 2008). Analyses by Jacobsen et al. (2011) revealed significant $^{36}$S excesses in wadalite in a coarse-grained igneous Allende CAI, from which a $^{36}$Cl/$^{35}$Cl ratio of $\sim 2 \times 10^{-5}$ was inferred. Meanwhile, large, yet variable excesses of $^{36}$S were observed in a unique Na, Cl, Ca, and Al-rich Allende chondrule $A3509$ (Wasserburg et al., 2011). The absence of correlation between $^{36}$S excesses and $^{36}$Cl/$^{35}$S ratios in this object was attributed to local redistribution of radiogenic $^{36}$S after $^{36}$Cl had decayed.

Interestingly, although the initial $^{36}$Cl/$^{35}$Cl ratios inferred in previous studies vary widely, all secondary phases measured so far lack resolvable $^{26}$Mg excesses that could be due to the decay of $^{26}$Al ($t_{1/2} = 0.7$ Myr), implying that $^{36}$Cl and $^{26}$Al may have been produced by different processes and/or incorporated into early Solar System solids at different times. Given that $^{26}$Al likely comes from a stellar source (e.g., Villeneuve et al., 2009) and that secondary phases may have formed late, the lack of $^{26}$Mg excesses in secondary phases presenting $^{36}$S anomalies points to either a very high $^{36}$Cl/$^{35}$Cl initial ratio ($\sim 10^{-2}$) in the ESS, or a late ($\sim 3$ Myr after CAI formation) irradiation scenario for the local production of $^{36}$Cl (Jacobsen et al., 2011). An inferred initial ratio of $^{36}$Cl/$^{35}$Cl $\sim 10^{-2}$ far exceeds the predictions from any model of stellar nucleosynthesis; therefore, a late irradiation scenario producing $^{36}$Cl at the observed level has been the favored idea. In this framework, $^{36}$Cl was produced in the early solar nebula and then incorporated into the CAIs via aqueous alteration, which formed CI-rich phases, such as sodalite and wadalite.

The Allende fine-grained inclusion Curious Marie is a unique CAI, highly depleted in uranium, in which an extremely large $^{235}$U excess ($\delta_{235}U + 59%$ relative to the uranium isotopic standard CRM-112a) was recently identified (Tissot et al., 2016). This provided definitive evidence that $^{235}$Cm was alive in the ESS, as previously suggested by Brennecka et al. (2010). Curious Marie consists primarily of secondary mineral phases such as sodalite, nepheline, and grossular, and is therefore characterized by a distinctive Mg-poor and CI-rich bulk chemical composition when compared with common fine-grained CAIs. The CI-rich phases in this sample are characterized by elevated $^{36}$Cl/$^{34}$S ratios and therefore provide an excellent opportunity to study CI-S systematics. In this study, we performed in situ isotopic measurements of $^{26}$Al-$^{26}$Mg, $^{36}$Cl-$^{36}$S and oxygen isotopic compositions of the Curious Marie CAI to better understand the origin and evolution of this unusual sample. Our results constrain the timing of alteration in this sample, as well as the relationship between $^{26}$Al and $^{36}$Cl in the early solar system.

## 2. Method

### 2.1. Sample description

Curious Marie is a fine-grained CAI, $\sim 1.25$ cm long and 0.75 cm wide, that was supplied by the Robert A. Pritzker Center for Meteoritics and Polar Studies at the Field Museum (Chicago). A small chip of the CAI was sampled...
by using clean stainless steel tweezers, and mounted in epoxy (Buehler) at the Origins Lab at the University of Chicago. This sample consists of widely-distributed powdery, porous aggregates of sodalite \([Na_8(Al_6Si_6O_{24})Cl_2]\), nepheline \([Na_6K_2(AlSiO_5)]\), grossular \([Ca_3Al_2Si_3O_{12}]\), and melilite \([CaSi_2Al_2SiO_7]\) (Fig. 1), suggesting that this inclusion has been heavily altered from its primary mineralogy. Typically distributed in the peripheral portions of Allende CAIs (Krot et al., 2010; Brearley and Krot, 2013 and references within), sodalite occurs widely throughout the Curious Marie CAI. The fine-grained sodalite and nepheline minerals, with interspersed regions of melilite and grossular, are indicative of pervasive aqueous alteration involving Na-Cl-bearing fluids (Kimura and Ikeda, 1995). Bulk measurements carried out by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) show that Curious Marie CAI is characterized by a Group II rare earth element (REE) pattern (Tissot et al., 2016), indicating a condensation origin of its precursor minerals (Boynton, 1975; Davis and Grossman, 1979). The high chlorine (\(\sim 7\) wt%), high aluminum (\(\sim 17\) wt%), and low sulfur contents (<0.01 wt%) of sodalite make it an ideal mineral for studying the \(^{26}\text{Al}-^{26}\text{Mg}\) and \(^{36}\text{Cl}-^{36}\text{S}\) systems.

2.2. Analytical methods

Petrologic and mineralogical studies were carried out using a petrographic microscope and a Tescan scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) at UCLA. Following the SEM characterization, Mg isotopic compositions were analyzed with the UCLA Cameca IMS-1270, and measurements of oxygen and sulfur isotope compositions were performed on the Cameca IMS-1290 ion microprobe at UCLA.

Magnesium isotopes were measured with an \(\sim 15\) \(\mu\)m, 2 nA O\(^-\) primary ion beam in order to generate sufficient signal. Because of the high Al/Mg ratios of the Curious Marie CAI (and that of a Madagascar hibonite standard used for normalization), the signals of Mg isotopes and \(^{27}\text{Al}\) were measured with the axial electron multiplier (EM) and an axial Faraday cup, respectively, through a peak jumping mass sequence of 23.5 (to condition the magnet hysteresis), \(^{24}\text{Mg}\), \(^{25}\text{Mg}\), \(^{26}\text{Mg}\) and \(^{27}\text{Al}\). The mass-resolving power was set to \(\sim 4000\) to separate all molecular interferences (e.g., \(^{27}\text{AlH}^+\)) and doubly charged \(^{48}\text{Ca}^{++}\) and \(^{48}\text{Ti}^{++}\) from the peaks of interest. Mg isotopic values (\(\delta\)Mg) are calculated as:

\[
\delta\text{Mg} = \left(\frac{25\text{Mg}}{24\text{Mg}}\right)_{\text{sample}} - 1\times 1000,
\]

where the standard \(^{26}\text{Mg}/^{24}\text{Mg}\) ratio is 0.13932 (Catanzaro et al., 1966). A relative sensitivity factor, defined as:

\[
A \equiv \frac{({^{27}\text{Al}}/^{24}\text{Mg})_{\text{true}}}{({^{27}\text{Al}}/^{24}\text{Mg})_{\text{measured}}}
\]

was determined to be 1.39 ± 0.04 based on the Madagascar hibonite (\(^{27}\text{Al}/^{24}\text{Mg} = 42.7 ± 0.7\); measured by UCLA JEOL JXA-8200 electron microprobe) and was applied for analyses of all phases in the Curious Marie CAI. Nepheline and sodalite are fine-grained, therefore some spots are a mixture of the two phases. The radiogenic excesses of \(^{26}\text{Mg}\) were calculated by using an exponential law (Davis et al., 2015) with a fixed \(^{25}\text{Mg}/^{24}\text{Mg}\) ratio of 0.12663 and \(\beta = 0.5160\) determined from a suite of terrestrial materials (San Carlos olivine, San Carlos pyroxene, synthetic pyroxene glass, and Burma spinel, Fig. 2).

Oxygen isotopic measurements were performed at high mass resolution with a beam spot size of \(\sim 10\) \(\mu\)m. The analytical procedure generally followed the method described in McKeegan et al. (1998). Care was taken to polish the sample mount in order to eliminate the implanted \(^{16}\text{O}\) from the primary O\(^-\) beam used during Al-Mg in situ analysis. A focused Cs\(^+\) primary beam with an intensity of 7 nA was utilized and a normal incidence electron gun was applied

![Fig. 1. Backscattered electron images of the Curious Marie CAI. The region outlined in panel (A) is shown in greater detail in panel (B). Fine-grained sodalite and nepheline are widely distributed in this heavily altered CAI with a small amount of grossular and melilite. The large dark circles in panel A result from prior laser ablation analyses. Mineral names: sod = sodalite; nep = nepheline; grs = grossular; mel = melilite.](image-url)
for charge compensation. The intensities of $^{16}$O/C0 and $^{18}$O/C0 were simultaneously measured with off-axis FC detectors (L2 and H1), whereas $^{17}$O signals were measured with the axial EM. The mass resolving power (MRP) for $^{17}$O was set at 7000 so that the OH$^-$ interference on $^{17}$O could be sufficiently resolved. All the data were corrected for instrumental mass fractionations by using a piece of NIST 610 glass ($d_{^{17}O} = 5.5\%$, $d_{^{18}O} = 10.9\%$, Kasemann et al., 2001). The matrix effects on the instrumental mass fractionation (IMF) between NIST 610 glass and the analyzed Fe-poor phases are likely no more than a few permil/amu and are strictly mass dependent (Kita et al., 2010; Isa et al., 2016).

Negative S and Cl secondary ions were produced by a 0.6 nA Cs$^+$ primary ion beam focused to a <10 $\mu$m spot, and were measured with the axial EM in peak jumping mono-collection mode, with the mass sequence of 32.8, 33S, 34S, 35Cl, 36S and 37Cl. A long pre-sputtering time was required (>20 min) to minimize surface S contamination. A mass resolving power of 5000 was used to resolve interferences (e.g., $^{32}$SH$^-$ and $^{35}$CH$^-$) from the peaks of interest. Special attention was paid to characterizing the mass spectrum at mass 36. Typical count rates of $^{36}$S from the sodalite in the CAI sample were 4–10 cps, much higher than background contributions from the noise in the ion counting system and/or in the mass spectrum (0.003 ~ 0.008 cps). The transmission was deliberately decreased to minimize the QSA effect (Quasi-Simultaneous Arrival, Slodzian et al., 2004) when measuring the pyrite and troilite standards; data were corrected for a dead time of 65 ns. Sulfur isotopic ratios were calculated by using total counts due to the relatively low $^{36}$S count rate (~3–10 cps; Ogliore et al., 2011). A systematic offset of ~17% on the $^{36}$S/$^{34}$S ratio was observed on all the standards when normalizing the measured $^{36}$S/$^{34}$S ratio to that of CDT ($^{36}$S/$^{34}$S$_{CDT} = 0.0034713$; Ding et al., 2001). This could result from the uncertain $^{36}$S/$^{34}$S ratio in Canyon Diablo troilite. Therefore, to compensate for this 17% offset on the $^{36}$S/$^{34}$S ratio, we normalized all the measured $^{36}$S/$^{34}$S ratios to 0.0034147. The excesses of $^{36}$S ($\delta ^{36}$S$^*$) were calculated by fixing the $^{33}$S/$^{34}$S ratio to the constant value of 0.17837 using a linear law with a mass fractionation exponent of 0.481 obtained from standards (e.g., Balmat pyrite, Canyon Diablo troilite, and CAR 123 pyrite, Fig. 3). Because of the large uncertainties relative to the magnitude of the mass fractionation, the choice of mass fractionation law (e.g., linear vs. exponential) is irrelevant in this case for the calculation of $\delta ^{36}$S$^*$. The calculation is as follows,

$$\delta ^{36}$S$^* = \delta ^{36}$S - $\left(\frac{\delta ^{33}$S}{-0.481}\right)$$

where

$$\delta ^{34}$S = \frac{(S^{34}$S)_{measured} - 1}{0.0034147} \times 1000$$

and the error of $(S^{34}$S)$_{measured}$ was calculated by following an error-propagation equation.
\[ \sigma(S^{34}/S^{32})_{\text{measured}} = \frac{1}{N_S} + \frac{1}{N_{34S}} \times \frac{S^{34}}{S^{32}} \]  
\( \sigma(\delta S) = \sigma(S^{34}/S^{32}) \times 1000 \)  
\[ \sigma(\delta^{36}S') = \sigma(S^{34}/S^{32})^{0.481^2} \text{ terrestrial sodalite } \]  
\[ \delta^{36}S = \delta^{35}Cl^{34}S^{34}/S^{32} \times 3^{25}Mg^{32}S^{34}/S^{32} \times 3^{27}Al^{24}Mg^{24}/S^{32} \]  
\[ \text{and } 3^{25}Mg^{32}S^{34}/S^{32} = 22.57. \]  

3. RESULTS

The bulk analysis of REE concentrations performed via ICP-MS reveals that Curious Marie is characterized by a Group II REE pattern (Tissot et al., 2016), indicative of condensation of the CAI precursor in a reservoir in which the most refractory REEs had been previously depleted and the more volatile REEs were incompletely condensed (Boynton, 1975; Davis and Grossman, 1979). The oxygen isotopic compositions in the secondary minerals of Curious Marie follow a mass-dependent fractionation line with \( \Delta^{17}O = -8\%e \) (Fig. 4A), similar to compositions obtained from secondary phases in other fine-grained CV CAIs (Aléon et al., 2005; Ushikubo et al., 2007).

The magnesium isotopic compositions measured in 9 spots of Curious Marie reveal excesses of \( \delta^{26}Mg^* \) that are not correlated with \( 27Al/24Mg \) (Table 1 and Fig. 4B). Unlike sodalite and nepheline in other altered CAIs from Allende that showed close to terrestrial Mg isotopic compositions (open squares in Fig. 4B; data from Lin et al., 2005; Fagan et al., 2007; Ushikubo et al., 2007), all the spots in Curious Marie are characterized by a relatively uniform, yet elevated \( \delta^{26}Mg^* = 43 \pm 6\%e \) (2\( \sigma \) error, reduced \( \chi^2 = 3 \) over a large range of \( 27Al/24Mg \) ratio (from 50 to 800). The mass-dependent fractionation \( (\Delta^{25}Mg) \) of the measured \( 3^{26}Mg^{34}S \) ranges from 5 to 17 per amu, which is consistent with a condensation origin of the CAI precursor. Although the uniform \( 26Mg \) excess independent of Al/Mg precludes the determination of an isochron, a model initial
$^{26}\text{Al}/^{27}\text{Al}$ ratio $= (6.2 \pm 0.9) \times 10^{-5}$ can still be inferred from the bulk $^{27}\text{Al}/^{24}\text{Mg}$ ratio ($\sim 95$, measured by solution ICPMS; Tissot et al., 2016) and assuming $\delta^{26}\text{Mg}_{\text{bulk}} = 0$.

Results of Cl-S isotopic analyses in sodalite from Curious Marie are shown in Table 1 and Fig. 4C. Significant excesses in $^{36}\text{S}$ are clearly resolved over a large range of $^{35}\text{Cl}/^{34}\text{S}$ values (from 500 to 20,000). However, the $^{36}\text{S}$ excesses are uniformly elevated, with a weighted average of $97 \pm 12\%$ (2σ error, reduced $\chi^2 = 3$), independent of the CI/S ratio, indicating late homogenization of the $^{36}\text{S}$ excesses after $^{36}\text{Cl}$ became extinct. The $^{35}\text{Cl}/^{34}\text{S}$ bulk ratio of Curious Marie was estimated as $935 \pm 240$ by averaging 30 raster analyses each comprising a $25 \mu\text{m} \times 25 \mu\text{m}$ surface area. The $^{36}\text{Cl}/^{35}\text{Cl}$ ratio at the time when the $^{36}\text{Cl}/^{36}\text{S}$ system closed can be constrained by applying the following equation,

$$
^{36}\text{S} = ^{36}\text{Cl}/^{35}\text{Cl} \cdot ^{34}\text{S}_{\text{Sample}} / ^{34}\text{S}_{\text{Sample}} \cdot 0.019
$$

where the 0.019 factor corresponds to the branching ratio of $^{36}\text{Cl}$ into $^{36}\text{S}$. In this way, we estimate that bulk $^{36}\text{Cl}/^{35}\text{Cl}$ ratio of Curious Marie was $(2.3 \pm 0.6) \times 10^{-5}$. The uncertainty estimate given here does not include possible systematic errors due to any inhomogeneity in the NIST 610 glass used for calibrating the RSF, or due to matrix effects between the RSF of the glass and that of the mineral assemblages in Curious Marie. Nevertheless, this ratio is lower than the initial $^{36}\text{Cl}/^{35}\text{Cl}$ ratio in ESS inferred from previous studies on sodalites in other CAIs by a factor of 3–10 (Lin et al., 2005; Hsu et al., 2006) which is almost certainly outside of any possible systematic error.

### 4. DISCUSSION

#### 4.1. $^{26}\text{Al}-^{26}\text{Mg}$ systematics in Curious Marie CAI: evidence for early aqueous alteration

The negative mass-dependent Mg isotope fractionation found in Curious Marie suggests that this inclusion condensed from the early solar nebula without experiencing significant later evaporation events as evaporation tends to drive the residue towards heavy isotopic compositions (e.g., Mendybaev et al., 2013). The oxygen isotopic compositions in the secondary minerals of Curious Marie CAI are mass-dependently fractionated with a uniform $\delta^{17}\text{O}$ value of $-8\%$ (Fig. 4A), comparable to the secondary phases found in other typical fine-grained CAIs (Clayton and...
Table 1
Oxygen isotopic composition, Al-Mg and Cl-S systematics in the terrestrial standards and *Curious Marie* CAI.a

<table>
<thead>
<tr>
<th>Oxygen</th>
<th>$\delta^{17}$O (%)</th>
<th>$\delta^{18}$O (%)</th>
<th>$\Delta^{17}$O (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Terrestrial standards</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>San Carlos Olivine</td>
<td>2.6 ± 0.4</td>
<td>4.9 ± 0.7</td>
<td>0.1 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>2.8 ± 0.4</td>
<td>5.9 ± 0.7</td>
<td>-0.3 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>3.0 ± 0.4</td>
<td>5.2 ± 0.7</td>
<td>0.4 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>2.7 ± 0.4</td>
<td>5.4 ± 0.7</td>
<td>-0.1 ± 0.5</td>
</tr>
<tr>
<td>Average</td>
<td>2.8 ± 0.7</td>
<td>5.3 ± 1.7</td>
<td>0.0 ± 1.0</td>
</tr>
<tr>
<td>NIST NBS 610</td>
<td>6.2 ± 0.3</td>
<td>11.2 ± 0.8</td>
<td>0.4 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>5.8 ± 0.6</td>
<td>11.8 ± 0.7</td>
<td>-0.4 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>5.7 ± 0.6</td>
<td>10.4 ± 0.9</td>
<td>0.3 ± 0.7</td>
</tr>
<tr>
<td></td>
<td>5.3 ± 0.4</td>
<td>11.0 ± 0.8</td>
<td>-0.4 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>4.7 ± 0.5</td>
<td>10.2 ± 0.9</td>
<td>-0.6 ± 0.7</td>
</tr>
<tr>
<td>Average</td>
<td>5.6 ± 1.6</td>
<td>10.9 ± 1.7</td>
<td>-0.1 ± 1.2</td>
</tr>
<tr>
<td><strong>Curious Marie</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodalite #1</td>
<td>-22.9 ± 0.7</td>
<td>-27.8 ± 1.0</td>
<td>-8.5 ± 0.9</td>
</tr>
<tr>
<td>Sodalite #2</td>
<td>-15.6 ± 0.4</td>
<td>-18.1 ± 0.6</td>
<td>-6.2 ± 0.5</td>
</tr>
<tr>
<td>Sodalite #3</td>
<td>-22.2 ± 0.5</td>
<td>-25.9 ± 0.6</td>
<td>-8.7 ± 0.6</td>
</tr>
<tr>
<td>Sodalite #4</td>
<td>-16.2 ± 0.4</td>
<td>-18.6 ± 0.5</td>
<td>-6.5 ± 0.5</td>
</tr>
<tr>
<td>Sodalite #5</td>
<td>-17.4 ± 0.7</td>
<td>-20.4 ± 0.9</td>
<td>-8.8 ± 0.9</td>
</tr>
<tr>
<td>Sodalite #6</td>
<td>-17.8 ± 0.4</td>
<td>-19.2 ± 0.4</td>
<td>-7.8 ± 0.4</td>
</tr>
<tr>
<td>Sodalite #7</td>
<td>-15.4 ± 0.5</td>
<td>-16.4 ± 0.6</td>
<td>-6.9 ± 0.6</td>
</tr>
<tr>
<td>Sodalite #8</td>
<td>-17.8 ± 0.4</td>
<td>-19.4 ± 0.6</td>
<td>-7.7 ± 0.5</td>
</tr>
<tr>
<td>Sodalite #9</td>
<td>-19.7 ± 0.4</td>
<td>-21.2 ± 0.6</td>
<td>-8.7 ± 0.5</td>
</tr>
<tr>
<td><strong>26Al-26Mg systematics</strong></td>
<td>$^{27}$Al/$^{24}$Mg F(Mg) (‰/amu)</td>
<td>$^{26}$Mg* (‰)</td>
<td></td>
</tr>
<tr>
<td><strong>Terrestrial standards</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madagascar hibonite</td>
<td>44.5 ± 1.4</td>
<td>0.2 ± 1.4</td>
<td>0.4 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>44.7 ± 1.4</td>
<td>-0.6 ± 1.4</td>
<td>2.0 ± 2.2</td>
</tr>
<tr>
<td></td>
<td>42.4 ± 1.3</td>
<td>-0.3 ± 1.2</td>
<td>1.0 ± 1.8</td>
</tr>
<tr>
<td></td>
<td>42.3 ± 1.3</td>
<td>-0.4 ± 1.6</td>
<td>1.6 ± 2.6</td>
</tr>
<tr>
<td></td>
<td>42.0 ± 1.2</td>
<td>-1.4 ± 1.3</td>
<td>0.0 ± 2.1</td>
</tr>
<tr>
<td></td>
<td>42.3 ± 1.3</td>
<td>-0.1 ± 1.6</td>
<td>2.0 ± 2.5</td>
</tr>
<tr>
<td></td>
<td>42.0 ± 1.3</td>
<td>1.2 ± 1.6</td>
<td>0.1 ± 2.4</td>
</tr>
<tr>
<td></td>
<td>41.9 ± 1.3</td>
<td>1.1 ± 2.5</td>
<td>-1.8 ± 4.1</td>
</tr>
<tr>
<td></td>
<td>42.1 ± 1.3</td>
<td>0.3 ± 1.7</td>
<td>2.8 ± 2.7</td>
</tr>
<tr>
<td>Average</td>
<td>42.7 ± 0.7</td>
<td>0.0 ± 1.3</td>
<td>0.9 ± 2.3</td>
</tr>
<tr>
<td><strong>Curious Marie</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodalite #1</td>
<td>265.4 ± 22.3</td>
<td>-12.3 ± 2.9</td>
<td>56.9 ± 9.3</td>
</tr>
<tr>
<td>Nepheline #1</td>
<td>133.2 ± 5.1</td>
<td>-12.2 ± 2.5</td>
<td>37.5 ± 7.7</td>
</tr>
<tr>
<td>Nepheline #2</td>
<td>264.4 ± 39.0</td>
<td>-11.2 ± 5.1</td>
<td>51.7 ± 10.6</td>
</tr>
<tr>
<td>Nepheline #3</td>
<td>137.3 ± 8.1</td>
<td>-15.5 ± 2.7</td>
<td>44.5 ± 8.9</td>
</tr>
<tr>
<td>Nepheline #4</td>
<td>657.9 ± 23.5</td>
<td>-10.6 ± 3.7</td>
<td>41.2 ± 12.0</td>
</tr>
<tr>
<td>Sodalite + Nepheline #1</td>
<td>48.6 ± 5.2</td>
<td>-12.0 ± 2.6</td>
<td>44.4 ± 7.9</td>
</tr>
<tr>
<td>Sodalite + Nepheline #2</td>
<td>80.1 ± 2.0</td>
<td>-7.1 ± 1.8</td>
<td>33.9 ± 5.5</td>
</tr>
<tr>
<td>Sodalite + Nepheline #3</td>
<td>147.7 ± 5.3</td>
<td>-16.7 ± 5.1</td>
<td>54.4 ± 17.4</td>
</tr>
<tr>
<td>Sodalite + Nepheline #4</td>
<td>780.1 ± 26.7</td>
<td>-10.9 ± 2.7</td>
<td>49.5 ± 8.4</td>
</tr>
<tr>
<td>Weighted Average</td>
<td>95$^{b}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Average with 95% confidence</td>
<td>42.7 ± 5.8</td>
<td></td>
<td>46.0 ± 12.6</td>
</tr>
<tr>
<td><strong>36Cl-36S systematics</strong></td>
<td>$^{35}$Cl/$^{34}$S</td>
<td>$^{36}$S/$^{34}$S</td>
<td>$\delta^{36}$S* (%)</td>
</tr>
<tr>
<td><strong>Terrestrial standards</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial sodalite</td>
<td>16247</td>
<td>0.003432 ± 0.000106</td>
<td>5 ± 31</td>
</tr>
<tr>
<td></td>
<td>16928</td>
<td>0.003360 ± 0.000109</td>
<td>-16 ± 32</td>
</tr>
<tr>
<td></td>
<td>14098</td>
<td>0.003439 ± 0.000102</td>
<td>7 ± 30</td>
</tr>
<tr>
<td>Average</td>
<td>15758</td>
<td>0.003116 ± 0.000133</td>
<td>-1 ± 39</td>
</tr>
</tbody>
</table>

(continued on next page)
Mayeda, 1984; Rowe et al., 1994; Aleon et al., 2005; Ushikubo et al., 2007). In addition, bulk measurements of the titanium isotopic composition of Curious Marie showed no significant mass-dependent fractionation ($F_{35} = -0.2 \pm 0.1 \%$) and a typical $^{50}$Ti isotopic anomaly, $e^{50}$Ti = +8.9 ± 0.3 (see Supplement online material of Tissot et al., 2016). In general, Curious Marie has the stable isotopic characteristics of a typical unmelted fine-grained Allende CAI except that it is pervasively altered and it is rich in secondary phases.

The Al-Mg systematics in the secondary phases of CAIs can be used to constrain the chronology of the alteration processes. In general, these secondary phases in most CAIs are characterized by disturbed Mg isotopic compositions, from which only very low or zero initial $^{26}$Al/$^{27}$Al ratios can be derived (Hutchon and Newton, 1981; Lin et al., 2005; Fagan et al., 2007; Ushikubo et al., 2007). This is often attributed to late aqueous alteration events in which Mg isotopic exchange between a CAI and an external fluid leads to a loss of radiogenic $^{26}$Mg excesses after $^{26}$Al has decayed away (Hutchon and Newton, 1981; Lin et al., 2005; Fagan et al., 2007; Ushikubo et al., 2007). In contrast to this pattern, we find a uniform $^{26}$Mg excess of average value $+43 \pm 6 \%$e all throughout the Curious Marie CAI with an elevated bulk $^{26}$Al/$^{24}$Mg ratio ($\sim$95). Since Curious Marie is a typical fine-grained CAI, and not a FUN inclusion, it is safe to assume that this $^{26}$Mg excess is a radiogenic product from the decay of $^{26}$Al instead of a nucleosynthetic signature. We calculate a model $^{26}$Al/$^{27}$Al ratio of $(6.2 \pm 0.9) \times 10^{-5}$, which is consistent with the canonical value $(5.27 \pm 0.17) \times 10^{-5}$, Jacobsen et al., 2008; MacPherson et al., 2010) within uncertainties. Thus, the Curious Marie’s precursor could have formed contemporaneously with other large CV3 CAIs that carry canonical $^{26}$Al/$^{27}$Al. The elevated homogeneous $^{26}$Mg excess in the secondary phases therefore indicates isotopic homogenization without contamination with chondritic Mg. Al-Mg systematics in the secondary phases of Curious Marie may thus constrain the timing of this alteration event.

The survival of a canonical $^{26}$Al/$^{27}$Al ratio in Curious Marie means that $^{26}$Mg loss during aqueous alteration, if it happened, must have been very limited. This is inconsistent with open-system aqueous alteration occurring after significant decay of $^{26}$Al to generate secondary minerals including sodalite and nepheline, as that would lead to large Mg loss (including $^{26}$Mg) and elevated Al/Mg ratios, and thereby result in a model initial $^{26}$Al/$^{27}$Al ratio much lower than the canonical value. To preserve the canonical model initial $^{26}$Al/$^{27}$Al ratio in the intensely altered Curious Marie, while losing enough Mg to offset the bulk $^{27}$Al/$^{24}$Mg from a relatively low value ($^{27}$Al/$^{24}$Mg = 2–10 in Allende CAIs that show no to little signs of alteration, e.g., Galy et al., 2000; Thrane et al., 2006; Jacobsen et al., 2008; Larsen et al., 2011) to $\sim$95, aqueous alteration and the formation of sodalite and nepheline must have taken place when $^{26}$Al was still extant. Due to the absence of radiogenic $^{26}$Mg at the time of this early alteration, the open-system reactions only re-distributed the primordial Mg isotopes. Therefore, the evolution of $^{26}$Al/$^{24}$Mg systematics in secondary phases remained undisturbed and resulted in a model initial $^{26}$Al/$^{27}$Al ratio of $\sim$5 $\times$ 10$^{-5}$ (Fig. 5). The homogeneous $^{26}$Mg further implies that after $^{26}$Al had completely decayed away, Mg isotopes were then homogenized through closed-system thermal processing.

As shown in Fig. 5, an upper limit on the time interval between the condensation of the precursors of Curious Marie and early alteration can be estimated by considering a two-stage model. Assuming that the condensation of precursors minerals of Curious Marie and the early alteration occurred at $t_0$ and $t_1$, respectively, the $^{26}$Mg excess in the precursors at time $t_1$ can be calculated as follows,

\[
\frac{^{26}Mg}{^{24}Mg} = \frac{^{26}Mg}{^{24}Mg_0} + \frac{^{26}Al}{^{24}Al_0} \times \frac{^{27}Al}{^{24}Al_0} \times \left[1 - e^{-\lambda(t_1-t_0)}\right]
\]

At time $t_1$, secondary phases were produced by aqueous alteration, leading to fractionation of the $^{27}$Al/$^{24}$Mg ratio in Curious Marie from $\sim$2–10 to $\sim$95. If the entire system stayed closed after this alteration, the present $^{26}$Mg excess
in the secondary phases can be calculated using the following equation,

\[
\frac{^{26}\text{Mg}}{^{24}\text{Mg}}_{\text{present}} = \frac{^{26}\text{Mg}}{^{24}\text{Mg}} + \frac{^{26}\text{Al}}{^{27}\text{Al}} \frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_0} e^{-\frac{t}{\tau}} \left(\frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_1} - \frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_0} \right) e^{-\frac{t}{\tau}}
\]

(8)

In \(\delta^{26}\text{Mg}_{\text{present}}\) notation, this takes the form,

\[
\delta^{26}\text{Mg}_{\text{present}} = \delta^{26}\text{Mg}_{t_0} + \frac{^{26}\text{Al}}{^{27}\text{Al}} \frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_0} e^{-\frac{t}{\tau}} \left(\frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_1} - \frac{^{27}\text{Al}}{^{24}\text{Mg}}_{t_0} \right) e^{-\frac{t}{\tau}} \times 10^3
\]

(9)

in which \(t_0 = 0 \text{ Myr}\) at CAI condensation, the primordial \(^{26}\text{Mg}\) isotopic composition \(\delta^{26}\text{Mg}_{t_0} = 0\%e, \quad \frac{^{26}\text{Mg}}{^{24}\text{Mg}}_{t_0} = 0.13932\) and \(\frac{^{26}\text{Al}}{^{27}\text{Al}}_{t_0} = (5.27 \pm 0.17) \times 10^{-5}\). The bulk \(\frac{^{27}\text{Al}}{^{24}\text{Mg}}\) ratio at \(t_1\) in \textit{Curious Marie} is the presently determined value of 95. The bulk \(\delta^{26}\text{Mg}^*\) value in \textit{Curious Marie} is \(46.0 \pm 12.6\%e\) (Table 1). The bulk \(\frac{^{27}\text{Al}}{^{24}\text{Mg}}\) ratio in the precursor of \textit{Curious Marie} is conservatively estimated as \(2 \sim 10\) based on previous studies on unaltered CAIs (e.g., Galy et al., 2000; Thrane et al., 2006; Jacobsen et al., 2008; Larsen et al., 2011). Since the model \(\frac{^{27}\text{Al}}{^{24}\text{Mg}}\) ratio in \textit{Curious Marie} is identical to the canonical ratio within the uncertainty, \(t_1\) cannot be resolved through Eq. (9). However, by propagating the errors of \(\frac{^{26}\text{Al}}{^{27}\text{Al}}_{t_1}\) and the bulk \(\delta^{26}\text{Mg}^*\) in \textit{Curious Marie} to \(t_1\), an upper limit of \(~50\ kyr\) can be constrained for the occurrence of early alteration after the condensation of \textit{Curious Marie}.

According to previous observations in sodalites and other secondary minerals (see Fig. 4B; Hutcheon and Newton, 1981; Lin et al., 2005; Fagan et al., 2007; Ushikubo et al., 2007), the Cl-rich fluid involved in sodalite formation transported Na into the primary phases to
replace Ca and Mg. An analogy may be made with Mg transport from rocks to seawater. According to studies on sea-floor alteration, Mg extraction from rocks has been observed in widespread regions as a result of water-rock reactions at relatively low temperatures (0–100 °C), at high water/rock ratios (10³–10⁶), and in solutions undersaturated in Mg (Snow and Dick, 1995). This high mobility of Mg compared to Fe, Si, and Al in natural low-temperature water-rock reactions is consistent with experimental work on elemental mobility in mafic rocks during water-rock reactions that demonstrate that Mg and Ca have the highest mobility, followed by Fe, and Al (Anderson and Hawkes, 1958; Luce et al., 1972; Siever and Woodford, 1979; Schott et al., 1981). This mobility sequence is also revealed in Curious Marie, as both Ca and Mg are depleted: the bulk Ca/Al ratio of this CAI is ~0.08 (Tissot et al., 2016), at least three times lower than the ratios inferred from less altered fine-grained CAIs (Ca/Al ~ 0.25–0.67). The depletion of Ca and Mg relative to Al also provides evidence of the action of aqueous alteration involving an external fluid, which changed the chemistry of the primary phases and could have compromised the Al-Mg isotopic system (Krot et al., 2004). As discussed above, this must have taken place very early after solar system formation, in order to preserve the radiogenic ⁴⁰Mg in the bulk CAI.

The conditions of sodalite-forming aqueous alteration can be further constrained from the chemical characteristics in Curious Marie. The bulk uranium concentration of this CAI is only 5% of that in CI chondrites (U/U_Ca = 0.05), whereas most CAIs are relatively enriched in U since it is refractory. Tissot et al. (2016) explain this extreme depletion as a result of intense aqueous alteration. Uranium behaves as a refractory element during CAI condensation in a reduced nebular gas, but it becomes mobile and soluble as U⁶⁺ when exposed to an oxidizing fluid (Langmuir, 1978; Wanner and Forest, 1992; Fruchter, 1998). The oxidizing fluid responsible for producing sodalite and nepheline would induce a substantial U loss.

The upper limit on the time of open-system alteration in Curious Marie provides a tight constraint on the timescale of Ca/U fractionation in the CAI. Tissot et al. (2016) analyzed the uranium isotopic composition in Curious Marie and other fine-grained Allende CAIs. From those measurements, they inferred a ⁴⁴Ca/⁴⁰K ratio of (5.6 ± 0.3) × 10⁻⁵ at the time of Ca/U fractionation. Since the absolute time of this fractionation was unknown, the initial ⁴⁴Ca/⁴⁰K ratio in the ESS was estimated to be (7.0 ± 1.6) × 10⁻⁵ by assuming that the fractionation occurred within the first 10 Myr of solar system formation. The present study shows that the canonical ⁶⁰⁶⁷Al/²⁷Al model ratio in Curious Marie requires an early aqueous alteration event, which presumably also fractionated the Ca/U ratio and generated secondary phases. Therefore, the age correction is minimal (compared to the 15.6 Myr half-life of ²⁴⁴Cm) and the inferred ²⁴⁴Cm/²³⁸U ratio of (5.6 ± 0.3) × 10⁻⁵ for Curious Marie should represent the best estimate for the initial ²⁴⁴Cm abundance in the Solar System.

### 4.2. Aqueous alteration in a small precursor planetesimal with a canonical ⁶⁰⁶⁷Al/²⁷Al ratio

Textures indicative of nebular alteration with a vapor, such as euhedral wollastonite whiskers, nepheline needles, and grossular in cavities (Hashimoto and Grossman, 1987; Russell and MacPherson, 1997) are not observed in Curious Marie. Furthermore, the large U depletion and the wide distribution of sodalite and nepheline requires intense alteration involving an external fluid, suggesting alteration in a planetesimal instead of a nebular process.

With ~3 MeV per decay (Matson et al., 2009 and references therein), ⁶⁰⁶⁷Al is one of the most effective heat sources for thermal processing in an early accreted meteorite parent body. Numerical simulations (Herndon and Herndon, 1977; Hutcheon and Hutchison, 1989; Srinivasan et al., 1999; Young, 2001; Sahijpal et al., 2007) show that a large planetesimal (radius > 50 km) with high levels of ⁶⁰⁶⁷Al will differentiate due to radioactive heating, producing a basaltic melt that could exist over the first ~8 Myr of the ESS. This is consistent with ⁶⁰⁶⁷Al/²⁶Mg and ⁵³Mn/⁵¹Cr chronologies in HED meteorites and angrites that indicate crust-mantle differentiation within the first 4 Myr after CAI (Srinivasan et al., 1999; Srinivasan, 2002; Nyquist et al., 2001, 2003a, 2003b; Baker et al., 2005; Sugiuira et al., 2005; Markowski et al., 2006; Trinquier et al., 2008; Spivak-Birndorf et al., 2009; Schiller et al., 2010). On small planetesimals, a magma ocean would exist for at least the first hundreds of thousands of years, therefore preventing low temperature aqueous alteration of surface materials during this interval. Yet, we have argued above that the mineralogy and chronology of Curious Marie requires fluid-rock interactions on a parent body at an early time, when ⁶⁰⁶⁷Al abundance was near the canonical level, so we may ask how it is that such a sample could have experienced only relatively low temperature aqueous alteration on a parent body, without that body having melted and differentiated.

To address this issue, we modeled the thermal evolution of small parent bodies (r = 2–20 km) that accreted within the first 0.5 Myr after CAI. The goal is to understand the distribution of the areas with conditions suitable for sodalite and nepheline formation (hydrothermal temperature, 100–500 °C, Barrer and White, 1952; Veit et al., 1991) and Mg leaching from the rock (low temperature with liquid water, 0–100 °C; Snow and Dick, 1995) in such early-formed planetesimals. The thermal evolution of the planetesimals calculated here (described in detail in Zhou et al., 2013) was dominated by the competing effects of heat generated by the decay of ⁶⁰⁶⁷Al distributed homogeneously throughout the whole body (6.4 × 10⁻¹³ J per decay) and the enthalpies of reactions. The energy conservation equation is as follows,

\[
\frac{\partial T}{\partial t} = \kappa \left( \frac{\partial^2 T}{\partial r^2} + \frac{2}{r} \frac{\partial T}{\partial r} \right) + (1 - \phi) \frac{Q}{c}
\]

in which T is temperature, t is time, \( \kappa \) is the thermal conductivity of a rock, r is the radial distance from the center of
the body, \( \phi \) is the volumetric fraction of the body composed of ice, \( Q \) is the energy produced through \( ^{26}\text{Al} \) decay per unit time, and \( C \) is the effective heat capacity of the rock. Assuming a CI abundance of Al, the heat production can be expressed in \( \text{W kg}^{-1} \) as \( Q = 6 \times 10^{-3} \left( ^{26}\text{Al}/^{27}\text{Al} \right) \phi \rho e^{-\lambda t} \) where \( \lambda \) is the decay constant of \( ^{26}\text{Al} \), \( \left( ^{26}\text{Al}/^{27}\text{Al} \right)_{0} \) is the canonical value in the ESS, and \( t \) is the time after CAI condensation. \textit{Curious Marie} is presumed to experience aqueous alteration on a small icy body with a limited gas permeability, and the bulk water content of the planetesimals is set to 8.3 wt\% (20 vol\%). More details on this model can be found in Supporting Online Material.

Results for small planetesimals (\( r = 2–20 \text{ km} \)) are shown in Fig. 6. Our calculations suggest that low-temperature aqueous alteration (0–100 °C) and hydrothermal events (100–500 °C) can take place near the surface of such objects within the first several hundred thousand years and that the duration of the heating event is mainly dependent on the size of the bodies. For example, in a planetesimal with a 2 km radius, significant heating via \( ^{26}\text{Al} \) decay persists for only \( \sim 0.2 \text{ Myr} \) and the core is not melted (\( T_{\text{core}} < \sim 400 \text{ K} \)), whereas in bodies with a 20 km radius, thermal processing can last for more than 5 Myr with core temperatures reaching up to 1700 K. In this model, we consider that fluid flow occurs only at temperatures between 273 K (0 °C) and 773 K (500 °C) (black contours in Fig. 6). Even for planetesimals of very different sizes, the energy from \( ^{26}\text{Al} \) decay is sufficient to initiate hydrothermal processing rapidly within the first 40 kyr over the entire body except the frozen surface layer, and all planetesimal cores reach their peak temperatures within 500 kyr.

Given that the decomposition temperature for the sodalite framework structure is \( \sim 1000 \text{ K} \) (Veit et al., 1991), an altered carbonaceous chondrite rock, such as that containing \textit{Curious Marie}, cannot have come from depths that reached this temperature but must have originated in the areas with persistent fluid flow.
that is between the 773 K and 273 K contours. From inspection of Fig. 6, it is clear that the size of this subsurface region, relative to that of the entire body, is significantly reduced with increasing planetesimal radius. For example, on a 2 km radius planetesimal, fluids become active in the interior area from the first 20 kyr to 500 kyr, giving a volume proportion of 33% for the hydrothermal zone compared to the entire body. A similar proportion of 36% is obtained on a 5 km radius body. However, this proportion decreases to 17% and 6% on 10 km and 20 km radii planetesimals, respectively, because the fluid activity on such bodies is restricted within a narrower zone. Hence, intensely altered chondrite constituents, of which Curious Marie is an example, are more likely located in the outer part of an early accreted small icy body (r < 10 km).

Based on petrographic observations, Metzler, Bischoff and others have suggested that some components of aqueously altered (Type 1 and Type 2) carbonaceous chondrites were formed (and altered) in a previous generation(s) of planetesimals prior to incorporation into their current asteroidal parent bodies (Metzler et al., 1992; Bischoff, 1998). The scenario implied by our thermal models is consistent with the alteration of anhydrous silicates in relatively small and uncompacte planetesimals that accreted refractory inclusions, chondrules, fine-grained nebula condensates, and water ice (Metzler et al., 1992). Small planetesimals can subsequently be destroyed by collision, or explosively disrupted by vapor pressure from their interior (Wilson et al., 1998, 1999). As a result, various kinds of both altered or unaltered components could be re-accreted and incorporated into carbonaceous chondrite parent-bodies.

A large body of evidence exists for so-called “pre-accretionary alteration” in different carbonaceous chondrite groups (see review by Bischoff, 1998). Yet, for CV chondrites the existence of this process is debated (Cohen et al., 1983; Hashimoto and Grossman, 1987; Keller and Buseck, 1989; Jogo et al., 2009). Our study of Curious Marie provides strong support for the existence of an early generation of planetesimals that aqueously altered some of the material found in CV chondrites. The ice melted by 26Al heating provided a fluid to alter the primary mineralogy of the CAI, while simultaneously leaching away uranium, increasing the $\Delta^{13}$O value, and mobilizing Mg isotopes. After this early aqueous alteration, the pre-accretionary icy body carrying Curious Marie would have been disrupted and portions were incorporated into the CV parent planetesimal (r > 200 km) where they would mix with other chondritic components. Later thermal metamorphism (Elkins-Tanton et al., 2011; Sahijpal and Gupta, 2011; Sréma et al., 2012) could have led to homogenization of $^{26}$Mg and $^{36}$S excesses in Curious Marie (see below).

4.3. Late thermal processes in Allende parent body: Closed-system homogenization of $^{26}$Mg and $^{36}$S in Curious Marie CAI

The uniform $^{26}$Mg and $^{36}$S excesses in the secondary phases of Curious Marie require that some closed-system thermal processing took place in the CV parent body after the complete decay of $^{26}$Al. The condition of the late thermal metamorphism can be constrained through the mineralogy and chemical composition of the host meteorite. The presence of ferrous olivine in the dark inclusions of Allende suggests extensive dehydration of phyllosilicates in the parent body (Kojima and Tromeoka, 1996) compared to the aqueously altered CM/CI chondrites (Krot et al., 1997). Based on the formation of nonporous rims around some of these dark inclusions (Buchanan et al., 1997), it has been estimated that the temperature of dehydration could have been as high as 600 °C (Krot et al., 1997). Thus, an important aspect to consider in assessing whether our proposed scenario is realistic is the duration required for isotopic homogenization of Mg and S in sodalite and nepheline at 600 °C. Although the self-diffusion coefficients for Mg and S in hydrous secondary minerals in meteorites are not available, we approximate them using the Mg diffusivity data in anorthite (LuTourette and Wasserburg, 1998) because this mineral is one of the potential precursors for the feldspathoid minerals nepheline and sodalite (Sharp et al., 1989; Kimura and Ikeda, 1995). Given the small grain size of the secondary phases in Curious Marie (<10 μm), $^{26}$Mg excesses can be homogenized within a short time (~10$^4$ years) at ~600 °C. We are not aware of any studies for sulfur thermal diffusivity in relevant mineral phases. Thus, we presume that sulfur isotope compositions in the secondary phases of Curious Marie CAI can be homogenized contemporaneously with Mg isotopes during metamorphism on the Allende parent body.

To sum up, in order to interpret our experimental results, Curious Marie must have experienced at least four stages of major events: (1) the precursor of Curious Marie condensed in the early solar nebula with other CAIs; (2) this precursor was rapidly transported beyond the snowline and accreted into a small icy body in which it was heavily altered by a NaCl-rich oxidizing fluid (carrying live $^{36}$Cl) to form secondary phases such as sodalite and nepheline within ~50 kyr; (3) the small icy body was broken up and

### Table 2
Summary of $^{26}$Al-$^{26}$Mg and $^{36}$Cl-$^{36}$S systematics in CI-rich secondary phases of CAIs in this study and previous work.

<table>
<thead>
<tr>
<th>CAI</th>
<th>Mineral</th>
<th>Reference</th>
<th>$^{26}$Al/$^{26}$Al</th>
<th>Age (Myr)</th>
<th>$^{36}$Cl/$^{36}$Cl</th>
<th>$^{36}$Cl/$^{36}$Cl$_{initial}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ningqiang CAI</td>
<td>Sodalite</td>
<td>Lin et al. (2005)</td>
<td>$\sim 1 \times 10^{-5}$</td>
<td>1.8</td>
<td>$\sim 5 \times 10^{-6}$</td>
<td>$\sim 2.9 \times 10^{-4}$</td>
</tr>
<tr>
<td>Pink Angel</td>
<td>Sodalite</td>
<td>Hsu et al. (2006)</td>
<td>$&lt;1.7 \times 10^{-6}$</td>
<td>$&gt;3.6$</td>
<td>$(3.7 \pm 0.8) \times 10^{-6}$</td>
<td>$&gt;1.6 \times 10^{-2}$</td>
</tr>
<tr>
<td>ACFE CAI</td>
<td>Wadati</td>
<td>Jacobsen et al. (2011)</td>
<td>$(1.1 \pm 2.8) \times 10^{-6}$</td>
<td>$&gt;4.1$</td>
<td>$(1.8 \pm 0.1) \times 10^{-5}$</td>
<td>$&gt;2.2 \times 10^{-1}$</td>
</tr>
<tr>
<td>Allende Type B2 CAI</td>
<td>Sodalite</td>
<td>Ushikubo et al. (2007)</td>
<td>$&lt;4.4 \times 10^{-6}$</td>
<td>$&gt;5.0$</td>
<td>$(1.4 \pm 0.3) \times 10^{-6}$</td>
<td>$&gt;1.6 \times 10^{-1}$</td>
</tr>
<tr>
<td>Pink Angel</td>
<td>Sodalite</td>
<td>Nakashima et al. (2008)</td>
<td>$&lt;1.7 \times 10^{-5}$</td>
<td>$&gt;3.6$</td>
<td>$(1.5 \pm 2.2) \times 10^{-6}$</td>
<td>$&gt;0.7 \times 10^{-3}$</td>
</tr>
<tr>
<td>Curious Marie</td>
<td>Sodalite</td>
<td>This study</td>
<td>$(6.2 \pm 0.9) \times 10^{-5}$</td>
<td>$&lt;0.2$</td>
<td>$(2.3 \pm 0.6) \times 10^{-5}$</td>
<td>$1.7 \times 10^{-3}$–$3 \times 10^{-5}$</td>
</tr>
</tbody>
</table>
The existence of $^{36}$Cl in the secondary phases of chondrite constituents is thought to be a result of either late-stage solar energetic particle (SEP) irradiation of dust and gas near the proto-Sun, or injection into the early solar nebula from stellar sources such as supernovae, asymptotic giant branch stars or Wolf-Rayet stars (Leya et al., 2003; Goswami et al., 2005; Gounelle et al., 2006; Wasserburg et al., 2006). The calculated $^{26}$Al/$^{27}$Al initial ratios in the gas near the proto-Sun, or injection into the early solar nebula, or that if $^{36}$Cl and $^{26}$Al were coeval then the initial $^{36}$Cl/$^{35}$Cl ratio at solar system birth was extremely high ($>1 \times 10^{-5}$). This latter scenario is, however, not consistent with the prediction of the maximum abundance of $^{36}$Cl produced either by SEP irradiation ($^{36}$Cl/$^{35}$Cl $<1.5 \times 10^{-5}$) or by stellar nucleosynthesis (Wasserburg et al., 2006). For example, assuming coproduction of $^{36}$Cl and $^{26}$Al in a nearby supernova and simultaneous injection into the solar nebula, initial $^{36}$Cl/$^{35}$Cl ratios should be $<2 \times 10^{-4}$ for a canonical $^{26}$Al abundance (Wasserburg et al., 1998). This expected ratio is at least one order of magnitude lower than the $^{36}$Cl abundance needed to explain the CAI isotope data in the context of assumed concordant decay between $^{26}$Al and $^{36}$Cl. For these reasons, previous studies have favored a late irradiation of dust and gas to produce $^{36}$Cl in the solar nebula. In this framework, $^{36}$Cl was then introduced into CAIs through late aqueous alteration after $^{26}$Al extinction.

We infer an initial $^{36}$Cl/$^{35}$Cl model ratio for Curious Marie to be $(2.3 \pm 0.6) \times 10^{-5}$ based on the estimated bulk $^{36}$Cl/$^{35}$Cl ratio ($935 \pm 240$) and the measured $^{36}$S excesses ($^{36}$S/$^{34}$S = 0.003746 ± 0.000044). For comparison, we summarize in Table 2 and Fig. 7 the analyses of $^{26}$Al/$^{27}$Al and $^{36}$Cl/$^{35}$Cl systematics in secondary phases of CAIs measured in previous work and in this study. The ESS initial $^{36}$Cl/$^{35}$Cl ratios were calculated using the $^{26}$Al/$^{27}$Al ratios measured in the surrounding secondary phases through the following equation,

\[
\frac{^{36}\text{Cl}}{^{35}\text{Cl}}_{\text{initial}} = \frac{^{36}\text{Cl}}{^{35}\text{Cl}}_{\text{sample}} \left[ \frac{^{26}\text{Al}^{27}\text{Al}}{^{26}\text{Al}^{27}\text{Al}}_{\text{initial}} \right]^{^{36}\text{Cl}}_{^{26}\text{Al}}
\]

As shown in Fig. 7, assuming concordant decay of $^{26}$Al and $^{36}$Cl, the ESS initial $^{36}$Cl/$^{35}$Cl ratios derived from previous studies (Lin et al., 2005; Hsu et al., 2006; Ushikubo et al., 2007; Nakashima et al., 2008; Jacobsen et al., 2011) vary widely among CAIs. In addition, all the inferred initial ratios exceed the upper limit for stellar production thus necessitating a significant contribution of $^{36}$Cl from SEP irradiation.

We estimated the ESS $^{36}$Cl/$^{35}$Cl ratio using the calculated $^{36}$Cl/$^{35}$Cl and $^{26}$Al/$^{27}$Al model ratios in Curious Marie. It is possible that the observed $^{36}$Cl-$^{36}$S result in Curious Marie is derived from late alteration by a Cl-rich fluid, but this process would have most likely compromised the Mg isotopic composition of this CAI, as is the case for many previously studied samples (Hutcheon and Newton, 1981; Lin et al., 2005; Hsu et al., 2006; Fagan et al., 2007; Ushikubo et al., 2007). Therefore, an early aqueous alteration process, which introduced $^{36}$Cl into Curious Marie, is most consistent with the observed Mg and S isotopic compositions of this sample. If so, $^{36}$Cl and $^{26}$Al must have coexisted early in the solar nebula, and the $^{36}$Cl/$^{35}$Cl model ratio $(2.3 \pm 0.6) \times 10^{-5}$; red rectangle in Fig. 7] would then reflect the $^{36}$Cl/$^{35}$Cl ratio at the time when the aqueous alteration took place. Given that this event must have been
occurred no later than the first 50 kyr, we can constrain the initial \(^{36}\text{Cl}/^{35}\text{Cl}\) ratio on the \textit{Curious Marie} parent body to be 1.8–3 \(\times 10^{-3}\), which falls within the range expected if \(^{36}\text{Cl}\) came from a stellar source.

Although \(^{36}\text{Cl}\) can also be an irradiation product via reactions between energetic particles and S, Cl, K and Ca, we argue that in the case of \textit{Curious Marie}, irradiation is unlikely to be the main \(^{36}\text{Cl}\) contributor. Based on chemistry and petrology, \textit{Curious Marie} almost certainly obtained this radionuclide via interaction with a fluid inside an early-formed icy planetesimal no later than 50,000 years after CAI formation. However, \(^{36}\text{Cl}\) could not have been produced in abundance in such a cold nebular region by solar irradiation at that time because intervening dust and gas would have shielded targets from energetic charged particles. For protons with energy of 10 MeV/nucleon, the stopping column density is \(~0.2 \text{ g cm}^{-2}\) (Reedy, 1990). Assuming a mass density of \(10^{-10}–10^{-11} \text{ g cm}^{-3}\) (estimated for the midplane at 1 AU for a minimum mass solar nebula; Brauer et al., 2008), the stopping distance for energetic protons is only a fraction of an AU. Another possibility is production of \(^{36}\text{Cl}\) in the precursor of \textit{Curious Marie} near the Sun. Even though it is possible to produce \(^{36}\text{Cl}/^{35}\text{Cl}\) at the observed level (e.g., Gounelle et al., 2006), the absolute abundances of \(^{35}\text{Cl}\) and \(^{36}\text{Cl}\) in the irradiated solid would be \(\leq 100 \text{ ppb}\) (calculations were done by using the cross sections estimated with the TALYS program; Koning and Rochman, 2008). Such low abundances of spallogenic Cl would be completely diluted by a Cl-rich fluid, resulting in a much diminished \(^{36}\text{Cl}/^{35}\text{Cl}\) ratio in the secondary minerals. Therefore, we conclude that early Solar System irradiation contributed very little, if at all, to the observed \(^{36}\text{Cl}/^{35}\text{Cl}\) ratio in the \textit{Curious Marie} CAI.

The presence of \(^{26}\text{Al}\) and \(^{36}\text{Cl}\) in \textit{Curious Marie} at the time of aqueous alteration is best explained as inheritance from the molecular cloud, or perhaps from a specific stellar source (Wasserburg et al., 2006; supplementary material from Lugaro et al., 2014; Young, 2014). However, such a source for the \(^{36}\text{Cl}\) in \textit{Curious Marie} does not rule out the presence a spallation origin for the \(^{36}\text{Cl}\) observed in the secondary minerals from other CAIs and chondrules, as these phases formed much later (~3 Myr after CAI) and by that time, any \(^{36}\text{Cl}\) of stellar origin would have essentially completely decayed. Further work will be required to determine the proportion of \(^{36}\text{Cl}\) coming from inheritance versus that produced by irradiation processes late in the history of the solar nebula.

5. CONCLUSION

We investigated the oxygen isotopic compositions, and the \(^{26}\text{Al}/^{26}\text{Mg}\) and \(^{36}\text{Cl}/^{36}\text{S}\) systems in the U-depleted CAI, \textit{Curious Marie}. Based on this study, we conclude that

1. Homogenous and elevated \(^{26}\text{Mg}\) and \(^{36}\text{S}\) excesses were observed in the secondary phases of the Allende CAI \textit{Curious Marie}, indicating an intense alteration by a Na, Cl-rich oxidizing fluid. The alteration resulted in formation of new minerals, primarily nepheline and sodalite, and also in significant depletion of uranium and magnesium from the bulk CAI. The fluid brought in live \(^{36}\text{Cl}\) which was incorporated into the new minerals along with the existing \(^{26}\text{Al}\) that was still close to its canonical solar system initial value.

2. Thermal modeling suggests that the aqueous alteration of \textit{Curious Marie} most likely occurred in the outer regions of an early-accreted small icy planetesimal. After a few million years, during which time \(^{26}\text{Al}\) and \(^{36}\text{Cl}\) decayed to their radiogenic daughters, this small icy body was broken up and fragments incorporated into the parent body of CV chondrites. In the CV parent body, thermal processing caused by impacts or continuous accretion gave rise to closed-system isotopic equilibration in \textit{Curious Marie} to homogenize \(^{26}\text{Mg}\) and \(^{36}\text{S}\) excesses without contamination with chondritic components.

3. The isotopic system and petrology in \textit{Curious Marie} CAI suggest the presence of pre-accretionary small icy bodies in the early solar system prior to the formation of Allende parent body. Those early formed planetesimals were disrupted and their debris was recycled into a second generation of planetesimals.

4. The \(^{26}\text{Mg}\) and \(^{36}\text{S}\) excesses present in the early-altered \textit{Curious Marie} provide evidence that \(^{26}\text{Al}\) and \(^{36}\text{Cl}\) co-existed in the early solar nebula. The \(^{36}\text{Cl}/^{35}\text{Cl}\) ratio at the time of early alteration can be constrained as \((2.3 \pm 0.6) \times 10^{-5}\). Since alteration took place when \(^{26}\text{Al}\) was still near the canonical abundance, we inferred that the initial \(^{36}\text{Cl}/^{35}\text{Cl}\) in ESS should be \(1.7–3 \times 10^{-5}\).

5. The early alteration event that leached U from \textit{Curious Marie} was also responsible for the Mg depletion, allowing us to use \(^{26}\text{Al}/^{26}\text{Mg}\) to constrain the time of Cr/U fractionation in this CAI. Given that the alteration occurred very early, the inferred \(^{247}\text{Cm}/^{235}\text{U}\) ratio of \((5.6 \pm 0.3) \times 10^{-5}\) in \textit{Curious Marie} should also represent the Solar System initial \(^{247}\text{Cm}\) abundance.

ACKNOWLEDGEMENT

We thank Yuri Amelin, Yunbin Guan, and Benjamin Jacobsen for comments on the manuscript. We are particularly grateful to Edward D. Young and Katelyn A. McCain for their help with simulations of the thermal evolution for the small planetesimals. We also thank Heng Yang for his assistance on contour maps. The \textit{Curious Marie} sample from the Allende meteorite was provided by the Robert A. Prizker Center for Meteoritics (Field Museum). Discussions with Alexander N. Krot, Benjamin Jacobsen, Edward D. Young, and Craig E. Manning are greatly appreciated. This work was supported by NASA Grant (NNX13AD13G) to K.D. M., and a Crosby Postdoctoral Fellowship to F.L.H.T. The UCLA ion microprobe facility is partially supported by a grant from the NSF Instrumentation and Facilities program.

APPENDIX A. SUPPLEMENTARY MATERIAL

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.gca.2017.03.001.
REFERENCES


Fruchter J. S. (1998) Uranium Mobility During In Situ Redox Manipulation of the 100 Areas of the Hanford Site. Pacific Northwest National Laboratory, Richland, WA.


*Associate editor: Yuri Amelin*